MATHEMATICS AND COMPUTER SCIENCE (BS) (COLLEGE OF SCIENCE & HEALTH)

The BS in Math and Computer Science is a joint degree between the College of Computing and Digital Media and the Department of Mathematics in the College of Science and Health. It provides challenging opportunities to exceptional students with an interest in the highly theoretical nexus of math and computer science. Mathematics is a key element to the theory and practice of computer science and technology:

- Number theory forms the basis for encryption algorithms for messages sent over the Internet.
- Facts from projective geometry and multivariable calculus underlie the computer algorithms that control computer animation.
- Properties of abstract groups are instrumental in correcting transmission errors that occur when information is sent from one computer to another.
- Graph theory and combinatorics are used to create algorithms for Internet search engines and analyze Internet routing protocols.

This program is intended to appeal to academically talented students. It is designed to prepare them for graduate study in various areas of computer science such as theoretical computer science, graphics, data analysis, artificial intelligence, and computational methods and in areas in applied mathematics such as numerical analysis or discrete mathematics. The program is also designed to prepare students to compete for the more theoretically complex jobs found in computer software development.

Students in the program will explore a broad range of fields including:

- Theory of computation
- · Computational mathematics
- Artificial intelligence
- · Data analysis
- · Graphics
- Computer vision
- Research

It is highly recommended that students concentrate on one or two areas for their advanced classes to achieve depth, but they are not required to do so. Faculty advisors are available to assist students in their selection.

Program Requirements	Quarter Hours
Liberal Studies Requirements	80
Major Requirements	56 - 62
Major Concentration Requirements	28
Open Electives	22 - 28
Total hours required	192

Learning Outcomes

Students will be able to:

- Construct valid, logical arguments and analyze the reasoning of others.
- Model a computation problem, select appropriate algorithms and data structures for a solution, justify the correctness of the algorithm, and implement an application solving the problem.

1

- Use discrete and continuous mathematical structures to model problems and then solve them using appropriate techniques.
- Analyze the efficiency of a computational solution mathematically, and validate the analysis experimentally.

College Core Requirements

Modern Language Requirements

Students who intend to graduate with the Bachelor of Arts (BA) degree will be required to demonstrate competence in a modern language equivalent to the proficiency attained from one year of college-level language study. Such competence may be demonstrated in one of several ways:

- completing the last course in the fourth-year high school sequence of any language
- completing the last course in the first-year college sequence of any language
- completing a college course beyond the first-year level in any language
- achieving a satisfactory score on any of the Modern Language placement examinations administered at DePaul
- achieving a satisfactory rating in a proficiency examination accepted by DePaul
- achieving a score of 3 or higher on the Advance Placement (AP) test for any language
- achieving a score of 5 or higher in the Language B assessment from a Standard or Higher Level International Baccalaureate (IB) program
- · achieving a satisfactory score on the CLEP examination

Please note: Modern Languages courses with an E-designation are taught in English and may not be applied to the Modern Language Requirement.

For further information regarding satisfactory scores and possible credit from the DePaul placement, AP, CLEP, or IB examinations, please contact Student Records.

Students who complete an Inter-College Transfer (ICT) to the College of Science and Health will abide by the College of Science and Health Modern Language Requirement in place on the effective date of the ICT.

BA students who meet College requirements and wish to pursue further work in the language may elect the Language for Liberal Studies Option (https://catalog.depaul.edu/undergraduate-core/liberal-studies-program/ liberal-studies-program-guidelines/language-for-liberal-studies-option/) of the Liberal Studies Program. While Bachelor of Science (BS) students are not required to demonstrate competency in a modern language, the Language for Liberal Studies Option is available to them for language study at any level. Modern Languages courses with an E-designation are taught in English and may not be applied to the Language for Liberal Studies Option.

Major Declaration Requirements

All students in the College are required to declare a major field prior to beginning their junior year. After researching College programs, the student should declare a major field by visiting Campus Connection and using the Declarations and Inter-College Transfer tool. The student will then be assigned a faculty advisor or staff advisor in the department or program and should make an appointment to see that advisor at his or her earliest convenience.

To change major fields, or to declare a minor or concentration, the student must use the Declarations and Inter-College Transfer tool described above. However, for the purpose of exploring the possibility of changing a major field, the student should consult an academic advisor in the College or an academic advisor in the Office for Academic Advising Support.

Liberal Studies Requirements

Honors program requirements can be found in the individual Colleges & Schools section of the University Catalog. Select the appropriate college or school, followed by Undergraduate Academics and scroll down.

First Year Program

Chicago Quarter		
LSP 110 or LSP 111	DISCOVER CHICAGO or EXPLORE CHICAGO	4
Focal Point		
LSP 112	FOCAL POINT SEMINAR	4
Writing		
WRD 103	COMPOSITION AND RHETORIC I	4
WRD 104	COMPOSITION AND RHETORIC II	4
Quantitative Reas	soning	
Not Required		
Sophomore Year		
Race, Power, and	Resistance	
LSP 200	SEMINAR ON RACE, POWER, AND RESISTANCE	4
Junior Year		
Experiential Lear	ning	
Required		4
Senior Year		
Capstone		
Select one of the	following:	
CSC 394	SOFTWARE PROJECTS ¹	4
MAT 398	SENIOR CAPSTONE SEMINAR ¹	4

¹ Students must earn a C- or better in this course.

Learning Domains

Arts and Literature (AL) (https://catalog.depaul.edu/undergraduatecore/liberal-studies-program/liberal-studies-learning-domains/ arts-and-literature/)

• 3 Courses Required

Historical Inquiry (HI) (https://catalog.depaul.edu/undergraduatecore/liberal-studies-program/liberal-studies-learning-domains/ historical-inquiry/)

• 2 Courses Required

Math and Computing (MC) (https://catalog.depaul.edu/ undergraduate-core/liberal-studies-program/liberal-studieslearning-domains/math-and-computing/) • Not Required

Philosophical Inquiry (PI) (https://catalog.depaul.edu/ undergraduate-core/liberal-studies-program/liberal-studieslearning-domains/philosophical-inquiry/)

• 2 Courses Required (See note below)

Religious Dimensions (RD) (https://catalog.depaul.edu/ undergraduate-core/liberal-studies-program/liberal-studieslearning-domains/religious-dimensions/)

· 2 Courses Required (See note below)

Scientific Inquiry (SI) (https://catalog.depaul.edu/undergraduatecore/liberal-studies-program/liberal-studies-learning-domains/ scientific-inquiry/)

• 1 Lab Course Required

Social, Cultural, and Behavioral Inquiry (SCBI) (https:// catalog.depaul.edu/undergraduate-core/liberal-studies-program/ liberal-studies-learning-domains/social-cultural-and-behavioralinquiry/)

3 Courses Required

Notes

Hours

Students must take one of the following ethics courses:

Course	Title	Quarter Hours
Select one of the	following:	
CSC 208	ETHICS IN TECHNOLOGY (PI)	4
PHL/MGT 248	BUSINESS ETHICS (PI)	4
REL/MGT 228	BUSINESS, ETHICS AND SOCIETY (RD)	4

Specified required courses within Liberal Studies may have grade minimums (e.g. C- or better). Please consult your advisor or your college and major requirements.

Students with a primary major in Mathematics and Computer Science (joint degree) are required to complete one of the following Capstone courses: CSC 394 or MAT 398. Students double majoring or pursuing dual degrees with the primary major or primary degree in Mathematics and Computer Science (joint degree) are also required to complete one of these courses. Mathematics and Computer Science (joint degree) students in the University Honors Program shall take the University Honors Capstone. They are not expected to take both the Honors Capstone and the primary major or primary degree Capstone.

Courses offered in the student's primary major cannot be taken to fulfill LSP Domain requirements. If students double major, LSP Domain courses may double count for both LSP credit and the second major. Students who choose to take an experiential learning course offered by the major may count it either as a general elective or the Experiential Learning requirement.

In meeting learning domain requirements, no more than one course that is outside the student's major and is cross-listed with a course within the student's major, can be applied to count for LSP domain credit. This policy does not apply to those who are pursuing a double major or earning BFA or BM degrees.

Course	Title	Ouarter
		Hours
Choose one (1)	sequence:	8
CSC 241 & CSC 242	INTRODUCTION TO COMPUTER SCIENCE I and INTRODUCTION TO COMPUTER SCIENCE II	
OR		
CSC 243	INTRODUCTION TO COMPUTER SCIENCE FOR PROGRAMMERS (and one (1) major elective)	
Remaining Requ	lirements:	
CSC 300	DATA STRUCTURES I	4
CSC 301	DATA STRUCTURES II	4
CSC 321	DESIGN AND ANALYSIS OF ALGORITHMS	4
CSC 373	COMPUTER SYSTEMS I	4
CSC 374	COMPUTER SYSTEMS II	4
MAT 140	DISCRETE MATHEMATICS I	4
MAT 141	DISCRETE MATHEMATICS II	4
or MAT 215	INTRODUCTION TO MATHEMATICAL REASO	NING
MAT 260	MULTIVARIABLE CALCULUS I	4
MAT 262	LINEAR ALGEBRA	4
Select one of the	e following calculus sequences:	12 - 18
Calculus Seq	uence (option 1)	
MAT 147	CALCULUS WITH INTEGRATED PRECALCULUS I	
MAT 148	CALCULUS WITH INTEGRATED PRECALCULUS II	
MAT 149	CALCULUS WITH INTEGRATED PRECALCULUS III	
Calculus Seq	uence (option 2)	
MAT 150	CALCULUS I	
MAT 151	CALCULUS II	
MAT 152	CALCULUS III	
Summer Calc	ulus Sequence (option 3)	
MAT 155	SUMMER CALCULUS I	
MAT 156	SUMMER CALCULUS II	
Select One of the	e Following (Capstone)	4
CSC 394	SOFTWARE PROJECTS	
DSC 394	DATA SCIENCE PROJECT	
MAT 398	SENIOR CAPSTONE SEMINAR	
Select twelve (12	2) credit hours of CDM Major Electives	12
Select twelve (12	2) credit hours of MAT Major Electives	12
Select four (4) c	redit hours of CDM or MAT Major Elective	4
Select twenty-ei	ght (28) credit hours of Open Electives	28

Note: Students may take CSC 243 and one (1) Additional Major Elective in lieu of CSC 241 and CSC 242.

Major Electives

Students must earn a grade of C- or higher in all major requirements and major elective courses.

For the major electives, it is recommended that students concentrate on one or two areas to achieve depth, but they are not required to do so. Students are strongly encouraged to discuss course selection with an advisor. Students may wish to arrange with a professor to take an independent study or a research experience (MAT 399 (https:// catalog.depaul.edu/search/?P=MAT%20399) or CSC 399 (https:// catalog.depaul.edu/search/?P=CSC%20399) or IT 300 (https:// catalog.depaul.edu/search/?P=IT%20300)) in order to explore a subject more deeply than is possible in a scheduled course.

Theory of Computation

The courses in the theory of computation area explore the mathematical and logical foundations of computer science.

Co	ourse	Title	Quarter Hours
	CSC 235	PROBLEM SOLVING	
	CSC 327	PROBLEM SOLVING FOR CONTESTS	
	CSC 333	CRYPTOLOGY	
	CSC 344	AUTOMATA THEORY AND FORMAL GRAMMARS	
	CSC 347	CONCEPTS OF PROGRAMMING LANGUAGES	
	CSC 348	INTRODUCTION TO COMPILER DESIGN	
	CSC 358	SYMBOLIC PROGRAMMING	
	CSC 376	DISTRIBUTED SYSTEMS	
	CSC 389	THEORY OF COMPUTATION	
	MAT 216	FOUNDATIONS OF ADVANCED MATHEMATICS	
	MAT 302	COMBINATORICS	
	MAT 303	THEORY OF NUMBERS	
	MAT 305	GRAPH THEORY	
	MAT 310	ABSTRACT ALGEBRA I	
	MAT 335	REAL ANALYSIS I	
	MAT 336	REAL ANALYSIS II	
	MAT 349	APPLIED PROBABILITY	
	or MAT 351	PROBABILITY AND STATISTICS I	
	MAT 370	ADVANCED LINEAR ALGEBRA	

Computational Methods

The computational methods area investigates quantitative and computational methods in computer science.

Course	Title	Quarter Hours
CSC 331	SCIENTIFIC COMPUTING	
MAT 304	DIFFERENTIAL EQUATIONS	
MAT 359	SIMULATION MODELS AND MONTE CARLO METHOD	
MAT 384	MATHEMATICAL MODELING	
MAT 385	NUMERICAL ANALYSIS I	
MAT 386	NUMERICAL ANALYSIS II	

Artificial Intelligence

For students with an interest in the computational relations between syntax and semantics.

C	Course	Title	Quarter Hours	Research Course	Title	Quarter
	CSC 357	EXPERT SYSTEMS				Hours
	CSC 358	SYMBOLIC PROGRAMMING		CSC 395	RESEARCH COLLOQUIUM	
	CSE 375	INTRODUCTION TO ROBOTICS		CSC 399	INDEPENDENT STUDY	
	CSC 380	FOUNDATIONS OF ARTIFICIAL		MAT 390	MATHEMATICS READING AND RESEARCH	
		INTELLIGENCE		MAT 396	SENIOR THESIS RESEARCH	

Data Science Area

For students who are interested in statistical and computational analysis of data. Many of the courses in this area require the student to take MAT 351-MAT 353.

0	Course	Title	Quarter Hours
	DSC 323	DATA ANALYSIS AND REGRESSION	
	or MAT 356	APPLIED REGRESSION ANALYSIS	
	DSC 324	ADVANCED DATA ANALYSIS	
	DSC 333	INTRODUCTION TO BIG DATA PROCESSING	
	DSC 341	FOUNDATIONS OF DATA SCIENCE	
	DSC 345	MACHINE LEARNING	
	DSC 365	DATA VISUALIZATION	
	MAT 341	STATISTICAL METHODS USING SAS	
	MAT 349	APPLIED PROBABILITY	
	or MAT 351	PROBABILITY AND STATISTICS I	
	MAT 352	PROBABILITY AND STATISTICS II	
	MAT 353	PROBABILITY AND STATISTICS III	
	MAT 355	STOCHASTIC PROCESSES	
	MAT 357	NONPARAMETRIC STATISTICS	
	MAT 358	APPLIED TIME SERIES AND FORECASTING	
	MAT 359	SIMULATION MODELS AND MONTE CARLO METHOD	
	MAT 360	GENERALIZED LINEAR MODELS	

Computer Vision

Computer vision studies the mathematical and algorithmic underpinnings of image analysis and image processing.

С	ourse	Title	Quarter Hours
	MAT 261	MULTIVARIABLE CALCULUS II	
	MAT 335	REAL ANALYSIS I	
	MAT 370	ADVANCED LINEAR ALGEBRA	
	MAT 381	FOURIER ANALYSIS AND SPECIAL FUNCTIONS	
	MAT 384	MATHEMATICAL MODELING	
	MAT 387	OPERATIONS RESEARCH: LINEAR PROGRAMMING	
	MAT 388	OPERATIONS RESEARCH: OPTIMIZATION THEORY	
	CSC 381	INTRODUCTION TO DIGITAL IMAGE PROCESSING	
	CSC 382	APPLIED IMAGE ANALYSIS	

	CSC 395	RESEARCH COLLOQUIUM	
	CSC 399	INDEPENDENT STUDY	
	MAT 390	MATHEMATICS READING AND RESEARCH	
	MAT 396	SENIOR THESIS RESEARCH	
	Finance		
	Course	Title	Quarter Hours
	MAT 349	APPLIED PROBABILITY	
	MAT 368	MATHEMATICS FOR FINANCE	
	MAT 387	OPERATIONS RESEARCH: LINEAR PROGRAMMING	

Open Electives

Open Elective credit hours are required to meet the minimum graduation requirements of 192 hours. Open Electives may be taken from any unit at DePaul.

See www.cdm.depaul.edu (http://www.cdm.depaul.edu) to see sample schedule of course requirements on a year-by-year basis.

Degree Requirements

Students in this degree must meet the following requirements:

- · Complete a minimum of 192 credit hours (generally 48 courses)
- Earn a grade of C- or higher in WRD 103, WRD 104, and all Major and Minor courses
- Earn a grade of D or higher in all other Liberal Studies and Open Elective courses
- · Maintain a cumulative GPA of 2.0 or higher