PURE MATHEMATICS (MS)

The Department of Mathematical Sciences offers a program of study leading to the Master of Science degree in Pure Mathematics. The program provides students with rigorous training in Pure Mathematics as well as a solid foundation for pursuing a PhD degree in Mathematics or teaching Mathematics at the college level. This is an evening program offered at the Lincoln Park campus. The program can be completed in two academic years by taking two classes per quarter or in four quarters by taking three classes per quarter.

Program Requirements	Quarter Hours
Core Requirements	32
Concentration Requirements	16
Total hours required	48

Learning Outcomes

Students will be able to:

- Construct valid logical arguments and create formal mathematical proofs.
- · Read and analyze professional mathematical literature.
- Identify, formulate, abstract, and solve problems in Pure Mathematics using tools from a variety of mathematical areas including linear algebra, abstract algebra, topology, and analysis.
- Communicate mathematical ideas clearly by using appropriate mathematical terminology and notation.

Degree Requirements

Course Requirements

At least 48 quarter hours of graduate level work in mathematics and passing two comprehensive examinations in Algebra and Analysis.

Core Courses

Title	Quarter Hours
ADVANCED LINEAR ALGEBRA	4
GROUP THEORY	4
FIELDS AND GALOIS THEORY	4
RINGS AND MODULES	4
TOPOLOGY	4
MEASURE THEORY	4
FUNCTIONAL ANALYSIS	4
COMPLEX ANALYSIS	4
	Title ADVANCED LINEAR ALGEBRA GROUP THEORY FIELDS AND GALOIS THEORY RINGS AND MODULES TOPOLOGY MEASURE THEORY FUNCTIONAL ANALYSIS COMPLEX ANALYSIS

Elective Classes

Course			Title				
		-				 ~	

Select 16 quarter hours from the following: 16			
	MAT 451	PROBABILITY AND STATISTICS I	
	MAT 452	PROBABILITY AND STATISTICS II	
	MAT 453	PROBABILITY AND STATISTICS III	
	MAT 481	FOURIER ANALYSIS AND SPECIAL FUNCTIONS	
	MAT 482	PARTIAL DIFFERENTIAL EQUATIONS	
	MAT 484	MATHEMATICAL MODELING	

MAT 485	NUMERICAL ANALYSIS I
MAT 486	NUMERICAL ANALYSIS II
MAT 494	GRAPH THEORY
MAT 498	PROBLEM SOLVING IN MATHEMATICS
MAT 596	ADVANCED TOPICS IN ALGEBRA
MAT 597	ADVANCED TOPICS IN ANALYSIS
MAT 598	ADVANCED PROBLEM SOLVING IN ALGEBRA AND ANALYSIS
MAT 595	GRADUATE THESIS RESEARCH (may be repeated up to a maximum of 8 credit hours total)

With program director's written approval two of the elective courses can be substituted with graduate courses in other areas, such as Computer Science, Physics, or Mathematical Education.

Program Graduate Academic Student Handbook

Academic Probation

A student will be placed on academic probation at the time when his/her cumulative GPA falls below 2.50.

Academic Dismissal

A student may be academically dismissed under one or more of the following violations of satisfactory progress:

- 1. student's cumulative GPA only for the first twelve completed credit hours after being placed on academic probation is below 2.50.
- 2. student's cumulative GPA after completing the first 24 credit hours after being placed on academic probation is below 2.50.
- 3. lack of timely progress toward degree completion, including both coursework and comprehensive exams.
- 4. failing comprehensive exams twice.

Conditional Admission

Applicants who have not yet completed one or more of the listed prerequisites may be admitted on a conditional basis while they complete the prerequisites at DePaul as undergraduate non-degree seeking students.

Readmission

The same readmission standards outlined in the Graduate Student Handbook and approval of the program director are observed for students in these programs.

Transfer Credit

Quarter

Hours

A maximum of twelve quarter hours may be accepted as transfer credit upon approval of the student's program director and the associate dean for graduate studies. Credit will only be transferred for courses that have equivalents to courses offered in DePaul's graduate program as determined by the program director and provided they did not count toward the completion of another degree at DePaul or another institution.

Undergraduate Courses

No undergraduate courses shall count toward the graduate degree.

Graduation Requirements

Requirements include, but are not limited to, twelve graduate courses (48 credit hours) at a minimum cumulative GPA of 2.50, and passing two comprehensive examinations in Algebra and Analysis.

Graduation with Distinction

A minimum cumulative GPA of 3.70 for coursework applied toward the pure mathematics degree and high performance on the comprehensive examinations - as determined by the Mathematical Sciences department - are required for graduation with distinction.

Time Limitation

The degree is expected to be completed in a maximum of six years.